Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 768
Filtrar
1.
BMC Plant Biol ; 24(1): 324, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658831

RESUMO

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) significantly affects the production of cabbage and other cruciferous vegetables. Plant antioxidant system plays an important role in pathogen invasion and is one of the main mechanisms underlying resistance to biological stress. Therefore, it is important to study the resistance mechanisms of the cabbage antioxidant system during the early stages of Xcc. In this study, 108 CFU/mL (OD600 = 0.1) Xcc race1 was inoculated on "zhonggan 11" cabbage using the spraying method. The effects of Xcc infection on the antioxidant system before and after Xcc inoculation (0, 1, 3, and 5 d) were studied by physiological indexes determination, transcriptome and metabolome analyses. We concluded that early Xcc infection can destroy the balance of the active oxygen metabolism system, increase the generation of free radicals, and decrease the scavenging ability, leading to membrane lipid peroxidation, resulting in the destruction of the biofilm system and metabolic disorders. In response to Xcc infection, cabbage clears a series of reactive oxygen species (ROS) produced during Xcc infection via various antioxidant pathways. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased after Xcc infection, and the ROS scavenging rate increased. The biosynthesis of non-obligate antioxidants, such as ascorbic acid (AsA) and glutathione (GSH), is also enhanced after Xcc infection. Moreover, the alkaloid and vitamin contents increased significantly after Xcc infection. We concluded that cabbage could resist Xcc invasion by maintaining the stability of the cell membrane system and improving the biosynthesis of antioxidant substances and enzymes after infection by Xcc. Our results provide theoretical basis and data support for subsequent research on the cruciferous vegetables resistance mechanism and breeding to Xcc.


Assuntos
Antioxidantes , Brassica , Doenças das Plantas , Xanthomonas campestris , Xanthomonas campestris/fisiologia , Xanthomonas campestris/patogenicidade , Brassica/microbiologia , Brassica/metabolismo , Antioxidantes/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo
2.
Sci Total Environ ; 922: 171313, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417508

RESUMO

The resource-based treatment of Chinese cabbage waste by anaerobic fermentation can effectively mitigate air, soil, and groundwater pollution. However, the compatibility between fermentative microorganisms and the environment might be a crucial limiting factor for the resource recycling of Chinese cabbage waste. Therefore, the gain effect of microbial consortia (JMRS, JMRST, JMRSZ, JCCW, JCCWT and JCCWZ) induced by adaptive domestication for efficient conversion of Chinese cabbage waste by anaerobic fermentation were explored in this study. A total of 42 single subsamples with same weights were randomly divided into seven treatments: sterile deionized water (Control); anaerobic fermentation inoculated with JMRS (MRS); anaerobic fermentation inoculated with JMRST (MRST); anaerobic fermentation inoculated with JMRSZ (MRSZ); anaerobic fermentation inoculated with JCCW (CCW); anaerobic fermentation inoculated with JCCWT (CCWT); anaerobic fermentation inoculated with JCCWZ (CCWZ) and samples were taken on days 30 and 60 after anaerobic fermentation. The results exhibited that all the treatments contributed to high levels of lactic acid (178.77-201.79 g/kg dry matter) and low levels of ammonia-N (12.99-21.03 g/kg total nitrogen). Meanwhile, MRSZ enhanced (p < 0.05) acetic acid levels (1.53 g/kg dry matter) and resulted in the lowest yeast counts. Microbiologically, the addition of microbial consortia decreased the linear discriminant analysis (LDA) scores of Massilia and Stenotrophomonas maltophilia. Moreover, MRSZ enriched (p < 0.05) Lactobacillus hilgardii, and decreased (p < 0.05) the abundance of bacteria containing mobile elements and potentially pathogenic bacteria. In conclusion, JMRSZ improved the efficient conversion of Chinese cabbage waste for resource utilization.


Assuntos
Brassica , Consórcios Microbianos , Fermentação , Anaerobiose , Domesticação , Brassica/microbiologia
3.
Viruses ; 16(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38399973

RESUMO

Phages of phytopathogenic bacteria are considered to be promising agents for the biological control of bacterial diseases in plants. This paper reports on the isolation and characterisation of a new Xanthomonas campestris pv. campestris phage, Murka. Phage morphology and basic kinetic characteristics of the infection were determined, and a phylogenomic analysis was performed. The phage was able to lyse a reasonably broad range (64%, 9 of the 14 of the Xanthomonas campestris pv. campestris strains used in the study) of circulating strains of the cabbage black rot pathogen. This lytic myovirus has a DNA genome of 44,044 bp and contains 83 predicted genes. Taxonomically, it belongs to the genus Foxunavirus. This bacteriophage is promising for use as a possible means of biological control of cabbage black rot.


Assuntos
Bacteriófagos , Brassica , Xanthomonas campestris , Xanthomonas campestris/genética , Bacteriófagos/genética , Brassica/microbiologia
4.
J Food Sci ; 89(1): 135-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018301

RESUMO

Palm wood powder derived from palm wood waste was utilized as a novel absorbent material. The investigation involved exploring its pore structure and size to achieve the controlled release of bioactive compounds from plai oil, providing protection against pathogenic bacteria and thereby extending the shelf life of broccoli. The palm wood sachet was prepared before being placed into the broccoli bag. The process to create the sachet involved freezing the palm wood at -10°C and then drying it at a temperature of 200°C. After drying, the material was ground to achieve a particle size of 20 mesh and then packaged into sachets made from wood pulp. The optimized palm wood plai oil sachet (PWPS), measuring 5 × 7 cm, with a thickness of 0.58 µm, was produced by soaking 2 g of palm powder in plai oil at a concentration of 30 µL/mL before drying and packing it inside a 5-L polyethylene plastic bag (24 × 34 cm) along with broccoli (150 g). The packages were kept at 4°C for 20 days to determine the antimicrobial activity of the PWPS and broccoli quality. PWPS significantly inhibited the growth of Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in broccoli for at least 20 days. The sachet demonstrated complete inhibition of all bacteria when reused at least two times and an 80% reduction in efficacy after three uses. Moreover, the PWPS controlled the growth of total aerobic bacteria and yeast and mold in broccoli, meeting microbiological criteria for up to 14 days. Broccoli stored with PWPS showed good quality results and contained high antioxidant value. These results demonstrate the potential application of PWPS in controlling food pathogens and spoilage microbes during storage. PRACTICAL APPLICATION: This study introduces a novel absorbent material made from palm wood powder, addressing the need for utilizing abundant waste palm wood in the food industry. The material benefits the safe transportation of vegetables from farms to markets. Its porous structure allows efficient absorption of plai oil emulsion, ensuring pathogen-free and high-quality treated broccoli. The reusable sachets benefit farmers seeking to extend the shelf life of fresh produce. This cost-effective method utilizes plai oil vapor, making it suitable for large-scale production.


Assuntos
Brassica , Óleos Voláteis , Óleos Voláteis/farmacologia , Brassica/microbiologia , Preparações de Ação Retardada , Pós , Madeira , Escherichia coli , Bactérias
5.
J Microorg Control ; 28(3): 109-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866892

RESUMO

Shredded cabbage treated with either tap water or electrolyzed water was stored in an active modified atmosphere packaging (MAP) of 10% CO2 for 5 d at 10℃, 7 d at 5℃, and 8 d at 1℃ to evaluate the occurrence and viability of sublethally injured coliform bacteria. The CO2 and O2 concentrations in the packages approached an equilibrium of 10% CO2 and 10% O2 during storage at all temperatures tested. Coliforms in shredded cabbage increased during storage at all three temperatures, with the increase being greater at 10℃. Sublethal injury at 65% to 69% for the coliforms was detected only on cabbage samples treated with electrolyzed water and stored at 5℃ for 4 and 7 d. Enterobacter cloacae was one of the injured species of coliform bacteria in shredded cabbage. Shredded cabbage was inoculated with chlorine-injured Escherichia coli O157:H7 and stored at 5℃ for 6 d in an active MAP of 10% CO2. Counts of E. coli O157:H7 remained almost constant during storage, and injured E. coli O157:H7 ranging from 50% to 70% were found on shredded cabbage throughout the storage period. These results indicate that sublethally injured indicator and pathogenic bacteria would be found on fresh-cut cabbage in the realistic MAP storage at 5℃.


Assuntos
Brassica , Brassica/microbiologia , Dióxido de Carbono/farmacologia , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Escherichia coli , Embalagem de Alimentos/métodos , Água
6.
Plant Physiol Biochem ; 197: 107657, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989987

RESUMO

In this study, a soil culture and a hydroponic experiment were conducted to assess the toxicology effects of copper oxide nanoparticles (CuO NPs) on soil microbial community structure and the growth of bok choy. Results showed CuO NPs had an inhibitory effect on soil microbial abundance, diversity, and activity, as well as the bok choy seedling growth, whereas CuO NPs at low concentrations did not significantly affect the soil microbial biomass or plant growth. In soil, CuO NPs at high dose (80 mg kg-1) significantly reduced the indexes of Simpson diversity, Shannon-Wiener diversity and Pielou evenness by 3.7%, 4.9% and 4.5%, respectively. In addition, CuO NPs at 20 and 80 mg kg-1 treatment significantly reduced soil enzymes (urease, alkaline phosphatase, dehydrogenase, and catalase) activities by 25.5%-58.9%. Further, CuO NPs at 20 mg L-1 significantly inhibited the growth of plant root by 33.8%, and catalase (CAT) activity by 17.9% in bok choy seedlings. The present study can provide a basis for a comprehensive evaluation of the toxicity effect of CuO NPs on soil microorganisms and phytotoxicity to bok choy seedlings.


Assuntos
Brassica , Nanopartículas Metálicas , Microbiota , Plântula , Antioxidantes/farmacologia , Catalase , Cobre/toxicidade , Ácidos Graxos/farmacologia , Fosfolipídeos , Plântula/microbiologia , Solo/química , Brassica/microbiologia
7.
Plant Dis ; 107(9): 2751-2762, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36973901

RESUMO

Pectobacterium is one of the most important genera of phytopathogenic bacteria. It can cause soft-rot diseases on a wide range of plant species across the world. In this study, three Pectobacterium strains (KC01, KC02, and KC03) were isolated from soft-rotted Chinese cabbage in Beijing, China. These three strains were identified as Pectobacterium versatile based on phylogenetic analysis of Pectobacterium 16S ribosomal RNA, pmrA, and 504 Pectobacterium core genes, as well as a genomic average nucleotide identity analysis. Their biochemical characteristics were found to be similar to the P. versatile type strain ICMP9168T but differed in response to citric acid, stachyose, D-glucuronic acid, dextrin, and N-acetyl-ß-D-mannosamine. All of the tested P. versatile strains showed different carbohydrate utilization abilities compared with P. carotovorum and P. odoriferum, particularly in their ability to utilize D-arabitol, L-rhamnose, and L-serine. Under laboratory conditions, the maceration ability of P. versatile on Chinese cabbage was the highest at 28°C, compared with those at 13, 28, 23, and 33°C. Additionally, P. versatile could infect all of the 17 known Pectobacterium host plants, except for Welsh onion (Allium fistulosum). A SYBR Green quantitative PCR (qPCR) detection system was developed to distinguish P. versatile from other soft-rot bacteria based on the combined performance of melting curve (with a single melting peak at around 85°C) and fluorescence curve (with cycle threshold <30) when the bacterial genomic DNA concentration was in the range of 10 pg/µl to 10 ng/µl. This study is the first to report the presence of P. versatile on Chinese cabbage in China, as well as a specific and sensitive qPCR assay that can be used to quickly identify P. versatile. The work contributes to a better understanding of P. versatile and will facilitate the effective diagnosis of soft-rot disease, ultimately benefitting commercial crop production.


Assuntos
Brassica , Pectobacterium , Pectobacterium carotovorum/genética , Filogenia , Pectobacterium/genética , Brassica/microbiologia , China , Plantas , Bactérias/genética , DNA Bacteriano/genética , Reação em Cadeia da Polimerase
8.
Environ Pollut ; 323: 121323, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822312

RESUMO

The prevalence of antibiotic resistance genes (ARGs), owing to irrigation using untreated swine wastewater, in vegetable-cultivated soils around swine farms poses severe threats to human health. Furthermore, at the field scale, the remediation of such soils is still challenging. Therefore, here, we performed field-scale experiments involving the cultivation of Brassica pekinensis in a swine wastewater-treated soil amended with composted pig manure, biochar, or their combination. Specifically, the ARG and mobile genetic element (MGE) profiles of bulk soil (BS), rhizosphere soil (RS), and root endophyte (RE) samples were examined using high-throughput quantitative polymerase chain reaction. In total, 117 ARGs and 22 MGEs were detected. Moreover, we observed that soil amendment using composted pig manure, biochar, or their combination decreased the absolute abundance of ARGs in BS and RE after 90 days of treatment. However, the decrease in the abundance of ARGs in RS was not significant. We also observed that the manure and biochar co-application showed a minimal synergistic effect. To clarify this observation, we performed network and Spearman correlation analyses and used structure equation models to explore the correlations among ARGs, MGEs, bacterial composition, and soil properties. The results revealed that the soil amendments reduced the abundances of MGEs and potential ARG-carrying bacteria. Additionally, weakened horizontal gene transfer was responsible for the dissipation of ARGs. Thus, our results indicate that composted manure application, with or without biochar, is a useful strategy for soil nutrient supplementation and alleviating farmland ARG pollution, providing a justification for using an alternative to the common agricultural practice of treating the soil using only untreated swine wastewater. Additionally, our results are important in the context of soil health for sustainable agriculture.


Assuntos
Agricultura , Compostagem , Farmacorresistência Bacteriana , Esterco , Suínos , Brassica/microbiologia , Sequências Repetitivas Dispersas , Microbiologia do Solo , Agricultura/métodos , Animais , Solo/química
9.
J Microbiol Biotechnol ; 33(1): 75-82, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36517044

RESUMO

Lactic acid bacteria (LAB) isolated from kimchi (a traditional Korean dish typically made of fermented cabbage) can provide various health benefits, including anti-obesity, antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. In this study, we examined the antimicrobial and immunomodulatory effects of Lactiplantibacillus plantarum WiKim0125 cultured in de Man, Rogosa, and Sharpe (MRS) medium containing vegetable waste. Live bacterial cells were eliminated via supernatant filtration or heat treatment. The cell-free supernatant (CFS) obtained from culture broth containing kimchi cabbage waste (KCW), cabbage waste (CW), or onion waste (OW) showed significantly higher antimicrobial activity against skin pathogens (Propionibacterium acnes and Staphylococcus aureus) and foodborne pathogens (Escherichia coli and Salmonella typhimurium), with inhibition zones ranging between 4.4 and 8.5 mm, compared to that in conventional MRS medium (4.0-7.3 mm). In lipopolysaccharide-stimulated RAW264.7 cells, both supernatant and heat-inactivated Lb. plantarum WiKim0125 from culture media containing KCW and CW suppressed the production of inflammatory cytokines (72.8% and 49.6%, respectively) and nitric oxide (62.2% and 66.7%, respectively) without affecting cell viability. These results indicate that vegetable waste can potentially increase the antimicrobial and immunoregulatory potency of LAB while presenting a molecular basis for applying postbiotics to health products.


Assuntos
Anti-Infecciosos , Brassica , Alimentos Fermentados , Lactobacillales , Humanos , Verduras/microbiologia , Lactobacillaceae , Brassica/microbiologia
10.
Plant Sci ; 327: 111534, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36379298

RESUMO

Bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis (Pcal) inflicts great damage on crucifer production. To explore efficient and sustainable strategies for Pcal disease control, we here investigated and screened for amino acids with reduced disease development. We found that exogenous foliar application with multiple amino acids reduced disease symptoms and bacterial populations in cabbage after spray-inoculation, but not syringe-inoculation. These results indicate that these amino acids showed a protective effect before Pcal entered plants. Therefore, we observed stomatal responses, which is a main gateway for Pcal entry into the apoplast, after amino acid treatments. As a results, we found several amino acids induce stomatal closure. Moreover, our findings demonstrated that reducing stomatal aperture width can limit bacterial entry into plants, leading to reduced disease symptoms. Indeed, Cys, Glu, and Lys, which showed a protective effect on cabbage, reduced stomatal aperture width and bacterial entry. Therefore, managing stomatal aperture can be a powerful strategy for controlling bacterial disease.


Assuntos
Infecções Bacterianas , Brassica , Brassica/microbiologia , Infecções Bacterianas/metabolismo , Plantas , Bactérias , Aminoácidos/metabolismo , Estômatos de Plantas/metabolismo
11.
Appl Environ Microbiol ; 88(19): e0076122, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36165651

RESUMO

Pectobacterium carotovorum subsp. carotovorum is a necrotrophic plant pathogen that secretes plant cell wall-degrading enzymes (PCWDEs) that cause soft rot disease in various crops. Bacteriophages have been under consideration as harmless antibacterial agents to replace antibiotics and copper-based pesticides. However, the emergence of bacteriophage resistance is one of the main concerns that should be resolved for practical phage applications. In this study, we developed a phage cocktail with three lytic phages that recognize colanic acid (phage POP12) or flagella (phages POP15 and POP17) as phage receptors to minimize phage resistance. The phage cocktail effectively suppressed the emergence of phage-resistant P. carotovorum subsp. carotovorum compared with single phages in in vitro challenge assays. The application of the phage cocktail to napa cabbage (Brassica rapa subsp. pekinensis) resulted in significant growth retardation of P. carotovorum subsp. carotovorum (P < 0.05) and prevented the symptoms of soft rot disease. Furthermore, phage cocktail treatments of young napa cabbage leaves in a greenhouse environment indicated effective prevention of soft rot disease compared to that in the nonphage negative control. We isolated 15 phage-resistant mutants after a phage cocktail treatment to assess the virulence-associated phenotypes compared to those of wild-type (WT) strain Pcc27. All mutants showed reduced production of four different PCWDEs, leading to lower levels of tissue softening. Ten of the 15 phage-resistant mutants additionally exhibited decreased swimming motility. Taken together, these results show that the phage cocktail developed here, which targets two different types of phage receptors, provides an effective strategy for controlling P. carotovorum subsp. carotovorum in agricultural products, with a potential ability to attenuate P. carotovorum subsp. carotovorum virulence. IMPORTANCE Pectobacterium carotovorum subsp. carotovorum is a phytopathogen that causes soft rot disease in various crops by producing plant cell wall-degrading enzymes (PCWDEs). Although antibiotics and copper-based pesticides have been extensively applied to inhibit P. carotovorum subsp. carotovorum, the emergence of antibiotic-resistant bacteria and demand for harmless antimicrobial products have emphasized the necessity of finding alternative therapeutic strategies. To address this problem, we developed a phage cocktail consisting of three P. carotovorum subsp. carotovorum-specific phages that recognize colanic acids and flagella of P. carotovorum subsp. carotovorum. The phage cocktail treatments significantly decreased P. carotovorum subsp. carotovorum populations, as well as soft rot symptoms in napa cabbage. Simultaneously, they resulted in virulence attenuation in phage-resistant P. carotovorum subsp. carotovorum, which was represented by decreased PCWDE production and decreased flagellum-mediated swimming motility. These results suggested that preparations of phage cocktails targeting multiple receptors would be an effective approach to biocontrol of P. carotovorum subsp. carotovorum in crops.


Assuntos
Bacteriófagos , Brassica , Pectobacterium , Praguicidas , Antibacterianos , Receptores de Bacteriófagos , Bacteriófagos/genética , Brassica/microbiologia , Cobre , Pectobacterium carotovorum , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Virulência
12.
New Phytol ; 236(1): 235-248, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35706385

RESUMO

Plant diseases are an important threat to food production. While major pathogenicity determinants required for disease have been extensively studied, less is known on how pathogens thrive during host colonization, especially at early infection stages. Here, we used randomly barcoded-transposon insertion site sequencing (RB-TnSeq) to perform a genome-wide screen and identify key bacterial fitness determinants of the vascular pathogen Xanthomonas campestris pv campestris (Xcc) during infection of the cauliflower host plant (Brassica oleracea). This high-throughput analysis was conducted in hydathodes, the natural entry site of Xcc, in xylem sap and in synthetic media. Xcc did not face a strong bottleneck during hydathode infection. In total, 181 genes important for fitness were identified in plant-associated environments with functional enrichment in genes involved in metabolism but only few genes previously known to be involved in virulence. The biological relevance of 12 genes was independently confirmed by phenotyping single mutants. Notably, we show that XC_3388, a protein with no known function (DUF1631), plays a key role in the adaptation and virulence of Xcc possibly through c-di-GMP-mediated regulation. This study revealed yet unsuspected social behaviors adopted by Xcc individuals when confined inside hydathodes at early infection stages.


Assuntos
Brassica , Xanthomonas campestris , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brassica/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Xilema/metabolismo
13.
Microbiol Spectr ; 10(4): e0016822, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35699432

RESUMO

This study provided a new perspective on the bacterial community succession during sauerkraut fermentation, and on resulting metabolic functions. While culture-dependent methods confirmed the key role of the well-known core microbiome species, metagenomic approach (shotgun) revealed Secundilactobacillus malefermentans as a species of the core microbiome, especially during the last weeks of fermentation. Although the potentiality of S. malefermentans has not yet fully explored, it held core functional genes usually attributed to others lactic acid bacteria driving sauerkraut fermentation. Based on our results it is arguable that S. malefermentans might have a key a role during sauerkraut fermentation carried out at low temperature. Under our experimental conditions, the profile of phenolic compounds changed throughout sauerkraut fermentation. The amount of free phenolics, including free phenolic acids, increased at the beginning of the fermentation, whereas the conversion of phenolic acids into microbial derivatives was consistent during the last part of the sauerkraut fermentation. We pioneered correlating changes in the phenolics profile to changes in the microbiome, although the framework presented is still fragmentary. Annotated genes linked to the phenolic compounds metabolism (VprA and padA) were found in many core species during the whole process. A high metabolic potential for phenolics bioconversion emerged for lactobacilli and Pediococcus spp. through correlation analysis between microbiome composition and phenolics profile. IMPORTANCE Our study was not limited to describe the succession pattern of the microbial community during sauerkraut fermentation, but also revealed how some neglected bacterial players belong to the core species during sauerkrauts processing, especially at low temperature. Such species might have a role as potential starters to optimize the fermentation processes and to obtain sauerkrauts with improved and standardized nutritional and sensory features. Furthermore, our correlations between microbiome composition and phenolics profile might also represent new references for sauerkraut biotechnology, aiming to identify new metabolic drivers of potential sauerkraut functionalities. Finally, sauerkraut ecosystem is a tractable model, although with high level of complexity, and resultant ecological information might be extended to other plant ecosystems.


Assuntos
Brassica , Microbiota , Bactérias/genética , Brassica/química , Brassica/metabolismo , Brassica/microbiologia , Fermentação , Microbiologia de Alimentos
14.
J Integr Plant Biol ; 64(5): 1007-1019, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257500

RESUMO

The tryptophan (Trp)-derived plant secondary metabolites, including camalexin, 4-hydroxy-indole-3-carbonylnitrile, and indolic glucosinolate (IGS), show broad-spectrum antifungal activity. However, the distinct regulations of these metabolic pathways among different plant species in response to fungus infection are rarely studied. In this study, our results revealed that WRKY33 directly regulates IGS biosynthesis, notably the production of 4-methoxyindole-3-ylmethyl glucosinolate (4MI3G), conferring resistance to Alternaria brassicicola, an important pathogen which causes black spot in Brassica crops. WRKY33 directly activates the expression of CYP81F2, IGMT1, and IGMT2 to drive side-chain modification of indole-3-ylmethyl glucosinolate (I3G) to 4MI3G, in both Arabidopsis and Chinese kale (Brassica oleracea var. alboglabra Bailey). However, Chinese kale showed a more severe symptom than Arabidopsis when infected by Alternaria brassicicola. Comparative analyses of the origin and evolution of Trp metabolism indicate that the loss of camalexin biosynthesis in Brassica crops during evolution might attenuate the resistance of crops to Alternaria brassicicola. As a result, the IGS metabolic pathway mediated by WRKY33 becomes essential for Chinese kale to deter Alternaria brassicicola. Our results highlight the differential regulation of Trp-derived camalexin and IGS biosynthetic pathways in plant immunity between Arabidopsis and Brassica crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Alternaria , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Brassica/microbiologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Indóis/metabolismo , Redes e Vias Metabólicas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo
15.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163500

RESUMO

Glucosinolates are an important class of secondary metabolites in Brassicales plants with a critical role in chemical defense. Glucosinolates are chemically inactive but can be hydrolyzed by myrosinases to produce a range of chemically active compounds toxic to herbivores and pathogens, thereby constituting the glucosinolate-myrosinase defense system or the mustard oil bomb. During the evolution, Brassicales plants have developed not only complex biosynthetic pathways for production of a large number of glucosinolate structures but also different classes of myrosinases that differ in catalytic mechanisms and substrate specificity. Studies over the past several decades have made important progress in the understanding of the cellular and subcellular organization of the glucosinolate-myrosinase system for rapid and timely detonation of the mustard oil bomb upon tissue damage after herbivore feeding and pathogen infection. Progress has also been made in understanding the mechanisms that herbivores and pathogens have evolved to counter the mustard oil bomb. In this review, we summarize our current understanding of the function and organization of the glucosinolate-myrosinase system in Brassicales plants and discuss both the progresses and future challenges in addressing this complex defense system as an excellent model for analyzing plant chemical defense.


Assuntos
Brassica/metabolismo , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Animais , Vias Biossintéticas , Brassica/microbiologia , Brassica/parasitologia , Resistência à Doença , Hidrólise , Insetos/fisiologia , Proteínas de Plantas/metabolismo
16.
J Sci Food Agric ; 102(11): 4685-4696, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35191049

RESUMO

BACKGROUND: In order to prolong the storage and inhibit microorganisms of pakchoi, the antibacterial activity and mechanism of ultrasound combined with sodium hypochlorite (NaClO-US), the efficiency of NaClO-US in reducing Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa as well as preserving quality of pakchoi were investigated. RESULTS: Ultrasound treatment could significantly reduce the usage of NaClO solution from 800 ppm to 500 ppm. NaClO-US decreased the counts of E. coli, S. aureus and P. aeruginosa, which disrupted the bacterial cell membrane with cytoplasmic leakage. In addition, NaClO-US significantly increased cell membrane permeability, while cell membrane integrity decreased, the secondary structure of bacterial proteins showed several obvious changes, such as the increase of random coil content, as well as the decrease of α-helix content. The bacterial counts, E. coli, S. aureus and P. aeruginosa population in pakchoi treated with NaClO-US reduced by 1.89, 1.40, 1.60, 1.72 log CFU g-1 , respectively compared to control sample after storage for 15 days. NaClO-US resulted in minimum chlorophyll depletion, flavor and sensory deterioration. CONCLUSION: NaClO-US solution treatment inhibited microorganisms and prolonged storage of pakchoi. © 2022 Society of Chemical Industry.


Assuntos
Brassica , Desinfetantes , Antibacterianos/farmacologia , Brassica/microbiologia , Desinfetantes/farmacologia , Escherichia coli , Pseudomonas aeruginosa , Hipoclorito de Sódio/farmacologia , Staphylococcus aureus
17.
Microb Biotechnol ; 15(6): 1762-1782, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35084112

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that invades the xylem of Brassica crops. Current chemical and antibiotics-based control measures for this bacterium are unsustainable and inefficient. After establishing a representative collection of Xcc strains, we isolated and characterized bacteriophages from two clades of phages to assess their potential in phage-based biocontrol. The most promising phages, FoX2 and FoX6, specifically recognize (lipo) polysaccharides, associated with the wxc gene cluster, on the surface of the bacterial cell wall. Next, we determined and optimized the applicability of FoX2 and FoX6 in an array of complementary bioassays, ranging from seed decontamination to irrigation- and spray-based applications. Here, an irrigation-based application showed promising results. In a final proof-of-concept, a CaCl2 -formulated phage cocktail was shown to control the outbreak of Xcc in the open field. This comprehensive approach illustrates the potential of phage biocontrol of black rot disease in Brassica and serves as a reference for the broader implementation of phage biocontrol in integrated pest management strategies.


Assuntos
Bacteriófagos , Brassica , Xanthomonas campestris , Brassica/genética , Brassica/microbiologia , Família Multigênica , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas campestris/genética
18.
Food Microbiol ; 102: 103886, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809929

RESUMO

Enterococcus faecium ST20Kc and ST41Kc were isolated from kimchi, a traditional Korean fermented cabbage. Bacteriocins produced by both strains exhibited strong activity against Listeria monocytogenes and various Enterococcus spp., including 30 vancomycin-resistant enterococcal strains, but not against other lactic acid bacteria (LAB) on the evaluated test panel. The antimicrobials produced by the strains were found to be proteinaceous and stable even after exposure to varying pH, temperature, and chemicals used in the industry and laboratory processes. Antimicrobial activity of both strains was evaluated as bactericidal against exponentially growing cultures of L. monocytogenes ATCC® 15313™ and Enterococcus faecalis 200A. Based on tricine-SDS-PAGE, the molecular weights of the bacteriocins produced by the strains were between 4 and 6 kDa. Additionally, both strains were susceptible to antibiotics, including vancomycin, kanamycin, gentamycin, ampicillin, streptomycin, tylosin, chloramphenicol, clindamycin, and tetracycline. Adhesion genes, map, mub, and EF-Tu, were also detected in the genomes of both strains. With gastrointestinal stress induction, both strains showed high individual survival rates, and capability to reduce viable counts of L. monocytogenes ATCC® 15313™ and Enterococcus faecalis 200A in mixed cultures. Based on the metabolomics analysis, both strains were found to produce additional antimicrobial compounds, particularly, lactic acid, phenyllactic acid, and phenethylamine, which can be potentially involved in the antimicrobial interaction with pathogenic microorganisms.


Assuntos
Antibacterianos , Bacteriocinas , Brassica , Enterococcus faecium , Alimentos Fermentados , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Brassica/microbiologia , Hidrocarbonetos Aromáticos com Pontes , Enterococcus faecalis , Alimentos Fermentados/microbiologia , Listeria monocytogenes , Testes de Sensibilidade Microbiana , República da Coreia
19.
Food Microbiol ; 102: 103913, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809939

RESUMO

Prophage distribution and phage characteristics based on the genome of Lactobacillus plantarum derived from kimchi were investigated. Prophage genomes retrieved from a database were analyzed in silico with prophage inducibility. Twenty-one kimchi-derived L. plantarum had at least one intact prophage, including a putative cryptic state on the chromosome. They were all confirmed to belong to the Siphoviridae family. Intact prophages can be classified into three different groups: PM411-like, Sha1-like, and unclassified phage groups. Some prophage regions were encoded with superinfection exclusion proteins and orphan methylases, suggesting that the phages co-evolved with their hosts. Interestingly, prophage inducibility showed that only DNA damage could induce prophages and that pH stresses by organic acids could not. Therefore, the prophage of L. plantarum did not affect the host unless DNA was damaged, and it would hardly affect the viability of the host through phage induction during kimchi fermentation. Our results might provide insights into the distribution and non-inducibility of prophages, existence of phage-immunity genes, and role of plant-derived L. plantarum prophages in host survival during late acidic kimchi fermentation.


Assuntos
Brassica/microbiologia , Alimentos Fermentados , Lactobacillus plantarum/virologia , Prófagos , Alimentos Fermentados/microbiologia , Genoma Viral , Prófagos/classificação , Prófagos/genética
20.
Plant Dis ; 106(1): 174-181, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34353128

RESUMO

Cruciferous weeds have been shown to harbor diverse Xanthomonas campestris pathovars, including the agronomically damaging black rot of cabbage pathogen, X. campestris pv. campestris. However, the importance of weeds as inoculum sources for X. campestris pv. campestris outbreaks in New York remains unknown. To determine if cruciferous weeds act as primary reservoirs for X. campestris pv. campestris, fields that were rotating between cabbage or had severe black rot outbreaks were chosen for evaluation. Over a consecutive 3-year period, 148 cruciferous and noncruciferous weed samples were collected at 34 unique sites located across five New York counties. Of the 148 weed samples analyzed, 48 X. campestris isolates were identified, with a subset characterized using multilocus sequence analysis. All X. campestris isolates originated from weeds belonging to the Brassicaceae family, with predominant weed hosts being shepherd's purse (Capsella bursa-pastoris), wild mustard (Sinapis arvensis), yellow rocket (Barbarea vulgaris), and pennycress (Thlaspi arvense). Identifying pathogenic X. campestris weed isolates was rare, with only eight isolates causing brown necrotic leaf spots or typical V-shaped lesions on cabbage. There was no evidence of cabbage-infecting weed isolates persisting in an infected field by overwintering in weed hosts; however, similar cabbage and weed X. campestris haplotypes were identified in the same field during an active black rot outbreak. X. campestris weed isolates are genetically diverse both within and between fields, but our findings indicate that X. campestris weed isolates do not appear to act as primary sources of inoculum for B. oleracea fields in New York.


Assuntos
Brassica , Doenças das Plantas/microbiologia , Plantas Daninhas/microbiologia , Xanthomonas campestris , Barbarea/microbiologia , Brassica/microbiologia , Capsella/microbiologia , Tipagem de Sequências Multilocus , New York , Sinapis/microbiologia , Thlaspi/microbiologia , Xanthomonas campestris/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...